

Christopher A. Hart Vice Chairman

Some Future Concerns

- Pilot professionalism
 - Loss of military pipeline
 - Civilian filters inadequate
 - Recent troubling events
- Overzealous criminalization of accidents
 - Undercuts proactive information programs
 - Hinders investigations
 - Reduces likelihood of addressing system issues
- Increasing automation

Increasing Automation: Good News, Bad News

- More complexity increases likelihood that operators will not completely understand the system
- More reliability increases likelihood that operators have never seen a given malfunction before, even in training
- Automation often masks the problem of less proficient pilots – until something goes wrong

Examples

- Strasbourg, France (1992)
 - Cali, Colombia (1995)
- Amsterdam, Holland (2009)
 - Rio to Paris (2009)
 - San Francisco (2013)?

Strasbourg, France

- Risk Factors
 - Night, mountainous terrain
 - No ground radar
 - No ground-based glideslope guidance
 - No airborne terrain alerting equipment

- Very Sophisticated Autopilot
- Autopilot Mode Ambiguity

Human Factors Challenge

- "3.2" in the window, with a decimal, means:
 - Descend at a 3.2 degree angle (about 700 fpm at 140 knots)
- "32" in the window, without a decimal, means:
 - Descend at 3200 fpm

Clue: Quick Changes in Autopilot Mode Frequently Signal a Problem

Flight data recorder readout program could have helped safety experts identify this problem

Cali, Colombia

- Risk Factors
 - Night
 - Airport in deep valley
 - No ground radar
 - Airborne terrain alerting limited to "look-down"
 - Last minute change in approach
 - More rapid descent (throttles idle, spoilers)
 - > Hurried reprogramming
- Navigation Radio Ambiguity
- Spoilers Do Not Retract With Power

Recommended Remedies:

Operational

Caution re last minute changes during the approach!!

Aircraft/Avionics

- Enhanced ground proximity warning system
- Spoilers that retract with max power
- Require confirmation of non-obvious changes
- Unused or passed waypoints remain in view

Infrastructure

- Eliminate single-letter navigational radio identifiers
- Ground-based radar
- Improved reporting of, and acting upon, safety issues

Amsterdam, Holland

The Conditions

- Malfunctioning left radar altimeter
- Pilots selected right side autopilot
- Aircraft vectored above glideslope
- Autothrust commanded throttles to idle

- Unknown to pilots, right autopilot used left radar altimeter
- Pilot unsuccessfully attempted go-around

– Queries:

- Should autopilot default to same side altimeter?
- More clarity re source of information? Ability to select?

Rio to Paris

The Conditions

- Cruise, autopilot engaged
- Night, in clouds, turbulence, coffin corner
- Ice blocked pitot tubes
- Autopilot and autothrust inoperative without airspeed
- Alpha protections disabled
- Pilots' responses inappropriate

– Queries:

- Pilot training re loss of airspeed information in cruise?
- Importance of CRM pilot knowing other pilot's actions?
- Pilot training re manual flight at cruise altitude?

Conclusion

- Automation has significantly improved safety, reliability, and productivity
- We can and must address more effectively the human/machine interface challenges of increasingly complex and increasingly reliable automation

Thank You

Questions?

